Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application

نویسندگان

  • Kai Wu
  • Yaohui Zhan
  • Cheng Zhang
  • Shaolong Wu
  • Xiaofeng Li
چکیده

We propose an architecture of conformal metal-semiconductor-metal (MSM) device for hot-electron photodetection by asymmetrical alignment of the semiconductor barrier relative to the Fermi level of metals and strong energy localization through plasmonic resonances. Compared with the conventional grating design, the multi-layered grating system under conformal configuration is demonstrated to possess both optical and electrical advantages for high-sensitivity hot-electron photodetection. Finite-element simulation reveals that a strong and highly asymmetrical optical absorption (top metal absorption >99%) can be realized under such a conformal arrangement. An analytical probability-based electrical simulation verifies the strong unidirectional photocurrent, by taking advantage of the extremely high net absorption and a low metal/semiconductor barrier height, and predicts that the corresponding photoresponsivity can be ~3 times of that based on the conventional grating design in metal-insulator-metal (MIM) configuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Area Plasmonic-Crystal−Hot-Electron-Based Photodetectors

In view of their exciting optoelectronic light− matter interaction properties, plasmonic−hot-electron devices have attracted significant attention during the last few years as a novel route for photodetection and light-energy harvesting. Herein we report the use of quasi-3D large-area plasmonic crystals (PC) for hot-electron photodetection, with a tunable response across the visible and near-in...

متن کامل

Metal-insulator-semiconductor heterostructures for plasmonic hot-carrier optoelectronics.

Plasmonic hot-electron devices are attractive candidates for light-energy harvesting and photodetection applications. For solid state devices, the most compact and straightforward architecture is the metal-semiconductor Schottky junction. However convenient, this structure introduces limitations such as the elevated dark current associated to thermionic emission, or constraints for device desig...

متن کامل

Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.

Nanostructured metals have received a significant amount of attention in recent years due to their exciting plasmonic and photonic properties enabling strong field localization, light concentration, and strong absorption and scattering at their resonance frequencies. Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of technologies inclu...

متن کامل

Electrically-Contacted Metal Nanodipole Antennas on Si

Nanoantennas are key optical elements in the conversion of light from free-space to ultra-small volume. Since they can provide highly-enhanced fields, strong confinement (to sub-wavelength scale) and high bulk and surface sensitivities, they are of interest in photodetection and biosensing applications. A Schottky barrier photodetector formed at the interface between a metal and a lightly doped...

متن کامل

Hot Carrier Extraction with Plasmonic Broadband Absorbers.

Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assemb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015